AUTOMATIC DISCOVERY OF FAMILIES OF NETWORK GENERATIVE PROCESSES

Telmo MENEZES

menezes@cmb.hu-berlin.de

Camille ROTH

roth@cmb.hu-berlin.de

SOCIAL NETWORK FAMILIES

APPROACH

Automatic
discovery of network
generation laws
Menezes, Roth, 2014

nature.com/articles/srep06284

FIELD

Facebook ego-
centered
friendship
networks

ANR Algopol, 2012-16

GOAL

Network classification according to their genotype

Menezes, Roth, 2019

APPROACH

NETWORK MODELS AS TREE-BASED PROGRAMS

- Vocabulary: k, d, i
- Grammar:
- +, -, *, /
- xy, ex, log, abs, min, max
- $>,<,=,=0$
- affinity function $\Psi_{\mathrm{g}}(a, b)$

- Metrics:

distributions on k, d, and

$$
P_{i j}=\frac{w_{i j}}{\sum_{\left(i^{\prime}, j^{\prime}\right) \in S} w_{i^{\prime} j^{\prime}}}
$$

$$
w i, j=\exp (4-2 d)
$$

EVOLUTIONARY PROCESS

Evolutionary algorithm iteratively improves generator

EVOLUTIONARY PROCESS

Evolutionary algorithm iteratively improves generator

Random generator:

EVOLUTIONARY PROCESS

Evolutionary algorithm iteratively improves generator

Program mutation:

EVOLUTIONARY PROCESS

Evolutionary algorithm
 iteratively improves generator

Program mutation:

1. SELECT NE OF THE TWO (RANDOMLY)
2. MUTATE

DISCOVERED GENOTYPES

Artificial basic PA : we recover $w=k$ in I00\% of cases

Word adjacencies

\mathbf{k}, yet not too far

(data: Adamic \& Glance, 2005)

Facebook

$$
w=\Psi(3, i . k, k)
$$

3 groups, local PA

DISCOVERED GENOTYPES

Artificial basic PA : we recover $w=k$ in 100% of cases

Word adjacencies

(data: Adamic \& Glance, 2005)

Facebook

$$
w=\Psi(3, i . k, k)
$$

3 groups, local PA

GOAL

NETWORK CLASSIFICATION ACCORDING TO GENOTYPE

FIELD

FACEBOOK EGO-CENTERED FRIENDSHIP NETWORKS

using 238 anonymized networks gathered through an online experiment 2015-16

[^0]
FIELD

FACEBOOK EGO-CENTERED FRIENDSHIP NETWORKS

FIELD

FACEBOOK EGO-CENTERED FRIENDSHIP NETWORKS

FOUND GENERATORS／GENOTYPES

Family

$\begin{aligned} & \mathbf{E R} \\ & c \end{aligned}$	0.08	0.88	0.95	54.6	0.62	6.0
	$\left(\max \left(k_{i}, i\right)=0 \rightarrow 0,0.63\right)$					
	＜198）					
ID	i	i				
i	＜58＞	＜109）				
$\begin{aligned} & \text { ID } \\ & e^{i} \end{aligned}$	e^{i} 〈18〉	e^{i}				
		＜139）				
$\begin{aligned} & \text { PA } \\ & k \end{aligned}$	k	k	k	k	k	k
	〈26〉	〈81＞	＜100＞	＜105＞	〈111＞	〈134〉
	k	k	k			
	＜145＞	$\langle 170\rangle$	${ }^{\langle 227\rangle}$			
PA＇	$k_{j}{ }^{k_{i}}$	$\left(\min (j, .66)>k_{i} \rightarrow j, e^{k_{j}}\right)^{\left(\min \left(\left(j=0, k_{j}, k_{i}\right), e^{k_{j}}\right)\right)}$				$k_{i}{ }^{k_{j}}$
$k_{i}^{k_{j}}$	${ }_{\langle 0\rangle}$	〈47）				${ }^{\langle 193\rangle}$

| $\mathbf{S C}-\alpha$ | $\psi_{8}\left(k_{j}^{2}, .62\right)-k_{i}$ | $\psi_{7}\left(k^{3}, 4\right)$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\psi_{g}\left(k^{s}, c\right)$ | $\langle 69\rangle$ | | $\langle 126\rangle$ | |

$w_{1}\left(\rho^{k} 1\right)$ $1 / 0_{0}\left(\rho^{k} d\right)$

FOUND GENERATORS／GENOTYPES

Family
List of generator functions and corresponding network number 〈ID〉

	0.08	0.88	0.95	54.6	0.62	6.0
ER	〈14〉	〈50〉	＜78）	＜82）	＜108）	〈124〉
c	$\left(\max \left(k_{i}, i\right)=0 \rightarrow 0,0.63\right)$					
	＜198〉					
ID	i	i				
i	〈58〉	＜109＞				
ID＇	e^{i}	e^{i}				
e^{i}	〈18）	〈139＞				
	k	k	k	k	k	k
PA	〈26）	＜81）	＜100	〈105＞	〈111〉	〈134〉
k	k	k	k			
	〈145＞	〈170＞	〈227＞			
PA＇	$k_{j}{ }^{k_{i}}$	$\left(\min (j, .66)>k_{i} \rightarrow j, e^{k_{j}}\right)^{\left(\min \left(\left(j=0, k_{j}, k_{i}\right), e^{k_{j}}\right)\right)}$				$k_{i}^{k_{j}}$
$k_{i}^{k_{j}}$	$\langle 0\rangle$	〈47）				${ }^{\langle 193\rangle}$

FOUND GENERATORS / GENOTYPES

FOUND GENERATORS / GENOTYPES

$\begin{aligned} & \mathbf{S C}-\alpha \\ & \psi_{g}\left(k^{s}, c\right) \end{aligned}$	$\psi_{8}\left(k_{j}^{2}, .62\right)-k_{i}$	$\begin{aligned} & \psi_{7}\left(k^{3}, 4\right) \\ & \langle 126\rangle \end{aligned}$	
$\begin{aligned} & \text { SC- } \beta \\ & \psi_{g}\left(e^{k},>\frac{1}{2}\right) \end{aligned}$	$\begin{array}{ll} \psi_{3}\left(2^{k}, .48\right) & \psi_{9}\left(e^{k_{i}}, .49\right) \\ \langle 3\rangle & \langle 36\rangle \\ \psi_{4}\left(e^{k}, 1\right) & \psi_{8}\left(e^{k}, d\right) \\ \langle 110\rangle & \langle 138\rangle \end{array}$	$\begin{array}{lll} \psi_{4}\left(e^{k}, 1.1\right) & \psi_{5}\left(\frac{e^{\max \left(k_{i}, k_{j}\right)}}{k_{i}}, k_{i}\right) \\ \langle 39\rangle & \begin{array}{l} \langle 80\rangle \end{array} \\ \psi_{4}\left(k_{i}, .67\right)^{k_{i}} & \psi_{5}\left(e^{k}, 1.7\right) & \psi_{3}\left(e^{k}, 2\right) \\ \langle 153\rangle & \langle 213\rangle & \langle 224\rangle \end{array}$	$\psi_{5}\left(e^{k}, 1\right)$ <90〉
$\begin{aligned} & \text { SC- } \gamma \\ & \psi_{g}\left(k^{B}, \sim 0\right) \end{aligned}$	$\begin{array}{ll} \hline \psi_{9}\left(k^{k}, 0\right) & \psi_{6}\left(3^{k}, 0\right) \\ \langle 23\rangle & \langle 31\rangle \\ \psi_{3}\left(e^{k}, 0\right) & \psi_{3}\left(2^{k}, 0\right) \\ \langle 104\rangle & \langle 127\rangle \\ \psi_{2}\left(k_{i} \cdot e^{k_{j}}, 0\right) & \psi_{4}\left(e^{k}, 0\right) \\ \langle 164\rangle & \langle 177\rangle \end{array}$	$\begin{array}{lll} \hline \psi_{4}\left(4 \cdot k^{5}, 0\right) & \psi_{8}\left(k^{k}, 0\right) & \psi_{3}\left(e^{k_{i}+k_{j}}, .0\right. \\ \langle 41\rangle & \langle 57\rangle & \langle 97\rangle \\ \psi_{6}\left(e^{\psi_{5}(1, k)}, 0\right)+.07 & \psi_{7}\left(e^{k}, 0\right) \\ \langle 141\rangle & \langle 155\rangle \\ \psi_{5}\left(k^{7}, .01\right) & \psi_{5}\left(e^{k}, .03\right) & \\ \langle 235\rangle & \langle 236\rangle & \end{array}$	$\underset{\langle 157\rangle}{\psi_{4}\left(e^{k}, .06\right)}$
$\begin{aligned} & \mathbf{S C}-\boldsymbol{\delta} \\ & \psi_{g}\left(e^{i}, *\right) \end{aligned}$	$\begin{array}{ll} \psi_{4}\left(e^{i}, e^{k_{i}}\right) & \psi_{4}\left(i^{j}, k_{j}\right) \\ \langle 6\rangle & \langle 89\rangle \\ \psi_{2}\left(9^{i}, 9^{9}\right) & \psi_{3}\left(e^{i}, j\right) \\ \langle 181\rangle & \langle 184\rangle \end{array}$	$\psi_{2}\left(j^{i}, k_{i}\right)$ $\psi_{3}\left(e^{i}, k_{i}\right)$ $\langle 92\rangle$ $\psi_{3}\left(e^{i}, e^{7}\right)$ $\psi_{3}\left(e^{i+j-d}, e^{5}\right)$ $\langle 137\rangle$ $\langle 196\rangle$ $\psi_{4}\left(9^{i}, 9\right)$ $\langle 202\rangle$	$\begin{aligned} & \psi_{3}\left(e^{i}, 1\right) \\ & \langle 148\rangle \end{aligned}$
$\begin{aligned} & \text { SC- } \varepsilon \\ & \psi_{g}(i k, *) \end{aligned}$	$\begin{array}{ll} \hline 9 \psi_{3}\left(i k_{i}, 2 k_{i}\right) & \psi_{4}\left(i k_{j}, 6 k_{j}\right) \\ \langle 9\rangle & \langle 24\rangle \\ \psi_{6}\left(i k_{i}, .44 k_{i}\right) & \psi_{4}\left(j k_{i}, .38\right) \\ \langle 106\rangle & \langle 107\rangle \\ \left(\frac{k_{j} k_{i}}{.66}+d\right) \psi_{4}(j, .61) \\ \langle 188\rangle & \end{array}$	$\begin{array}{lll} \hline \psi_{5}\left(j k_{j}, k_{j}\right) & \psi_{9}\left(i k_{i}, .1 k_{i}\right) & \psi_{2}\left(j k_{j}, k_{j}\right) \\ \langle 25\rangle & \langle 37\rangle & \langle 75\rangle \\ \psi_{3}\left(j k_{i}, k_{j}\right) & \psi_{4}\left(i \log \left(k_{i}\right), 0\right) \\ \langle 115\rangle & \langle 165\rangle & \\ \psi_{3}\left(i k_{j}, 2 k_{j}\right) & \psi_{3}\left(i k_{j}, k_{j}\right) & \psi_{3}\left(i k_{i}, 0\right) \\ \langle 194\rangle & \langle 206\rangle & \langle 209\rangle \end{array}$	$\begin{aligned} & \hline \psi_{7}\left(j k_{j}, 7 k_{j}\right) \\ & \langle 91\rangle \\ & \psi_{3}\left(j k_{i}, \frac{k_{i}}{4}\right) \\ & \langle 166\rangle \\ & \psi_{4}\left(i k_{i}, 3 k_{i}\right) \\ & \langle 218\rangle \end{aligned}$
$\begin{aligned} & \mathbf{S C}-\zeta \\ & \psi_{g}\left(i^{k}, *\right) \end{aligned}$	$\begin{array}{ll} \psi_{7}(i, 0)^{k_{j}} & \frac{7}{d} \psi_{4}\left(i^{k_{i}}, .48\right) \\ \langle 68\rangle & \langle 93\rangle \\ \psi_{9}\left(d j^{k_{i}}, 0\right) & \psi_{\min (i, 4)}\left(i^{k_{i}}, 0\right. \\ \langle 185\rangle & \langle 195\rangle \end{array}$	$\begin{array}{ll} \psi_{4}\left(\frac{i^{k} j}{k_{j}}, .18\right) & \psi_{8}\left(i^{k_{i}}, 2\right) \\ \langle 95\rangle & \langle 125\rangle \\) & \psi_{4}\left(i^{k_{i}}, 0\right) \\ \psi_{5}\left(9 j^{k_{i}}, .03\right) \\ & \langle 219\rangle \end{array}$	$\underset{\langle 179\rangle}{\psi_{4}\left(\frac{1}{6} i^{k_{i}}, d\right)}$
$\begin{aligned} & \mathbf{S C}-\eta \\ & \psi_{g}\left(i k^{2}, *\right) \end{aligned}$	$\begin{aligned} & \begin{array}{l} \psi_{5}\left(\left(i k_{i}\right)^{2}, i\right) \quad \psi_{5}\left(i k_{i}^{2}, 6\right) \\ \langle 16\rangle \\ \psi_{7}\left(\psi_{i}\left(.5, k_{j}^{2}\right), 0\right) \\ \langle 182\rangle \end{array} \end{aligned}$	$\begin{array}{ll} \hline \psi_{4}\left(2980.96 k^{2}, 2 k\right) & \psi_{2}\left(i k_{j}^{2}, k_{j}^{2}\right) \\ \langle 132\rangle & \langle 163\rangle \end{array}$	
$\begin{aligned} & \text { SC- } \theta \\ & \psi_{g}(k, 0)-1 \end{aligned}$	$\psi_{4}(k, 0)-.99$	$\psi_{7}(k, 0)-.93$	

SOCIAL CIRCLE (SC) GENOTYPES

In-group linking behavior

topological factors only:

$$
a, \beta, y \text { and } \theta
$$

exogenous factors only: δ

combination of both:

ε, ζ and η

Visual representation of some empirical ego-networks (top row) with their reconstruction (bottom row), for a selection of evoked families. ER, PA and ID are featured; each of the three main subfamilies of SC are also present (generators 97, 181 and 128 are all based on an affinity function of parameters 3,2 and 5 , respectively).

SOCIAL

CIRCLE (SC) GENOTYPES

In-group linking behavior

topological factors only:
a, β, y and θ
exogenous factors only: δ
combination of both:
ε, ζ and η

Family List of generator functions and corresponding network number (ID)

Fig. 3 Network generators mapped into a two-dimensional layout according to their pairwise distances. Different colors and shapes indicate families of generators that were manually identified as semantically similar. The legend shows the pattern that identifies each family

Fig. 4 Top panel, and bottom-left: Boxplots of numbers of nodes, edges and densities for the underlying networks of the various families, as well as all, unclassified and classified. Horizontal dashed line indicates overall median. Bottom-right: Stacked plot of family ratio per percentile of network density.

TAKE-HOME MESSAGE

TAKE-HOME SOFTWARE

- Propose an artificial scientist to guide
- Synthetic open-source tool
hypothesis search
- https://github.com/telmomenezes/synthetic
- Decipher the genotype of networks from
their phenotype

THANKS!

Telmo MENEZES

menezes@cmb.hu-berlin.de

Camille ROTH

roth@cmb.hu-berlin.de

socsemics
cmb.huma-num.fr/job-offers

[^0]: "Algopol" application

