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Networks are a powerful abstraction with applicability to a variety of scientific fields. Models explaining
their morphology and growth processes permit a wide range of phenomena to be more systematically
analysed and understood. At the same time, creating such models is often challenging and requires insights
that may be counter-intuitive. Yet there currently exists no general method to arrive at better models. We
have developed an approach to automatically detect realistic decentralised network growth models from
empirical data, employing a machine learning technique inspired by natural selection and defining a unified
formalism to describe such models as computer programs. As the proposed method is completely general
and does not assume any pre-existing models, it can be applied ‘‘out of the box’’ to any given network. To
validate our approach empirically, we systematically rediscover pre-defined growth laws underlying several
canonical network generation models and credible laws for diverse real-world networks. We were able to
find programs that are simple enough to lead to an actual understanding of the mechanisms proposed,
namely for a simple brain and a social network.

I
ncreasingly many scientific domains rely on the concept of networks to represent an observable state of a
system, where networks are usually seen as the outcome of a generative process. For systems without cen-
tralised control, these generative processes consist of local interactions between entities, be they proteins,

neurons, organisms, people or organisations.
While current technological advances have been making it increasingly easy to collect datasets for large net-

works, it is difficult to extract models from this data. This difficulty can be attributed both to the sheer size of the
datasets and to the non-linear dynamics of many of these decentralised systems, which resist reductionist
methodologies. Another difficulty is posed by the mapping between generative models and observable networks
since there is a many-to-many correspondence between generative models and observable networks. A network
may be explained by different models and a model – provided it is stochastic in nature – may be capable of
generating different classes of networks due to the amplification of initial random fluctuations.

Following conventional scientific methodology, researchers devise models that can account for a network and
then test the quality of the model against a number of metrics. Much-cited examples include preferential
attachment1, competition between nodes2,3, team assembly mechanisms4, random networks with constraints5–7,
inter alia. Models are typically based on intuition or prior evidence that such and such process appears to be
particularly important in the formation of interactions. A problem here is that of human bias in looking for good
models. There is always the possibility that high-quality models are counter-intuitive, and thus unlikely to be
proposed by researchers.

The work we report in this paper work is aligned with the idea of creating artificial scientists. Parts of the
scientific method are automated, namely the generation and refinement of hypothesis, as well as their testing
against observables. For example, in a work with some parallels to the ideas presented in this paper, scientific laws
are extracted from experimental data using genetic programming8.

There have been some preliminary attempts at using genetic programming to search for network models21–23,
and to structural analysis and community detection24. However, to the best of our knowledge, we provide the first
proof-of-concept application of symbolic regression to discover and select plausible morphogenetic processes for
real-world networks. The method we propose can be applied to both synthetic networks and on real-world
networks. In the case of synthetic networks, it makes it possible to discover the exact generative rule used to
construct the particular type of network in question, while in the case of real-world networks, it proposes a
generative rule that robustly reproduces the original topological features. Furthermore, in contrast with previous
works, our approach relies only on local information and uses a parameter-free fitness function without any ad-
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• Vocabulary: k, d, i

• Grammar: 
• +, -, *, / 
• xy, ex, log, abs, min, max
• >, <, =, =0
• affinity function ψg(a,b)

• Metrics:  
distributions on k, d, and 
triadic profiles (Milo et al. 2005)

NETWORK  MODELS  AS  TREE-BASED  PROGRAMS

Indeed, the simplicity of building blocks can be leveraged and used
to facilitate the definition of generators where certain vertices have
natural affinity for each other. This is the affinity function y, which
uses the modulo operation (remainder of the division of one number
by another) to divide the sequence identifier space into a number of g
groups, returns a if target and origin nodes i and j belong to the same
group (i.e. in case of ‘‘affinity’’), and b otherwise:

y i,j,g,a,bð Þ~
a, if i mod gð Þ: j mod gð Þ
b, otherwise,

!
ð3Þ

From now on, we will consider i and j to be implicit parameters and
write the function simply as: y(g, a, b).

We now have a methodological framework that we can use to
generate plausible models for network generators. Several runs on
the same target network may generate different models — although
we will show experimental evidence that they tend to converge on the
same behaviors. It is now up to the researcher to select amongst them,
possibly using his domain knowledge. A more objective considera-
tion is the trade-off between simplicity and precision. Our repres-

entation of generators allows for a very straight-forward measure of
model complexity: the program length. Trivially, the program length
is an upper bound on the Kolmogorov complexity15 of the model. This
allows us to apply a quantified version of Occam’s Razor: all other
things being equal, choose the model with the lowest program length.
In practice, depending on the variations in precision, the researcher
might wish to sacrifice some parsimony for some precision, or vice-
versa.

Application to real and synthetic networks
To assess our method we start by testing if we can discover generators
for networks that were produced by generators we defined ourselves.
According to our generator semantics, two classical network types
can be defined in a very succinct fashion.

For an ER random network,

wER i,jð Þ~c ð4Þ

where c is any constant value; for a generator based on Preferential
Attachment (PA) as in the Barabási-Albert model,

Figure 1 | Automatic discovery of models. Evolutionary loop including the synthetic network generation process. The top part of this figure describes
evolution at the generator population level, while the bottom (framed) part describes the evolution of a network for a given generator.
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on intuition or prior evidence that such and such process appears to be particu-
larly important in the formation of interactions. A problem here is that of human
bias in looking for good models. There is always the possibility that high-quality
models are counter-intuitive, and thus unlikely to be proposed by researchers.

This work is aligned with the idea of creating artificial scientists. Parts of the
scientific method are automated, namely the generation and refinement of hy-
pothesis, as well as their testing against observables. For example, in a work with
some parallels to the ideas presented in this paper, scientific laws are extracted
from experimental data using genetic programming (Schmidt & Lipson (2009)).

2 Generator search

We propose that machine learning techniques can be harnessed in helping re-
searchers generate such models. Our approach consists of employing a form of
evolutionary computation, a type of search inspired by Darwinism where evolu-
tionary pressure is created to guide a population of solutions to an increasingly
higher quality. In this case our individuals are network generative models, and
their quality is a measure of how much a synthetic network generated by a model
approximates the real observable network.

Two fundamental issues have to be addressed in implementing this tech-
nique: how to represent models in an uniform way that can be recombined and
how to measure the similarity between a synthetic and a real network.

The first problem touches on a limitation of current “network science”: there
is no formal way of representing processes similar to the way differential equa-
tions are used to model many systems. To address this we introduce the con-
cept of network generator as a computer program — or simply generators for
the purposes of this article. We define a network generative process as a se-
quence of discrete steps where a new arc is created at each step. The process
can be straightforwardly applied to both directed and undirected networks. At
any given moment, there is a set of possible arcs that could be created. A gener-
ator becomes fully defined if it provides a way to prefer some arc over the oth-
ers. Instead of attempting to define a deterministic selection process we create
a stochastic one — recognizing that many of the generative processes that pro-
duce complex networks have some degree of intrinsic randomness. Our genera-
tors thus attribute weights to arcs in a sample extracted from the set of all possi-
ble arcs, then stochastically selecting an arc from this sample with a probability
for each arc a given by:

Pa = wa�
s2S ws

The generator is thus a function g (vi , v j ) that assigns a weight wi j to a pair
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Figure 1: Example of one arc being created using a generator.
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NETWORK  CLASSIFICATION  ACCORDING  TO  GENOTYPE

a fraction weights how ordered is the set of nodes within the
graph (Fig. 1 I–L and SI Appendix). Formally, we define OðGÞ as

OðGÞ= jfvi ∈VC ∩Vgj
jV j

: [3]

Having exposed the formal description of the different hier-
archy indicators, i.e., T, F, and O, we proceed to use them as the
axes of our morphospace Ω, where networks can be properly
located and compared.

The Definition of the Morphospace Ω
According to our formalism, the hierarchical features of any
directed network are given by a point uðGÞ in a 3D morphospace
Ω, being Ω⊂ ½−1; 1$× ½0; 1$× ½0; 1$ (Fig. 2A and SI Appendix, Figs.
S13 and S14). The point uðGÞ represents the graph G by three
coordinates,

uðGÞ= ðTðGÞ;FðGÞ;OðGÞÞ∈Ω: [4]

Using the schematic representation of graphs outlined in Fig. 1,
we define an intuitive icon associated to each kind of graph.
As summarized in Fig. 2A, the perfect hierarchy is located

at uðGÞ= ð1; 1; 1Þ, whereas the completely nonhierarchical
system—a totally cyclic network—is located at uðGÞ= ð0; 0; 0Þ.
As defined, orderability and feedforwardness provide comple-
mentary information that defines forbidden regions of the mor-
phospace. Because FðGÞ= 1 is possible only when OðGÞ= 1,
feedforward networks belong to the FðGÞ=OðGÞ= 1 line. Given
OðGÞ= 1, no other FðGÞ≠ 1 is allowed. Attending to F and O, we
find an interesting region, defined by OðGÞ= 0 and FðGÞ> 0. It is
worth stressing that, although OðGÞ and FðGÞ converge in their
upper bound in a single value that defines the region of feedfor-
ward networks, they differ when O goes to zero. This is because
FðGÞ deals with the condensed graph while including condensed
modules but OðGÞ is about the nodes outside cycles. This little
difference permits a family of rare networks, highlighted in our
diagram by means of green icons in Fig. 1A (SI Appendix, Fig.
S13). They are typically formed by chains of small SCCs
arranged in a feedforward structure. As is shown below, no such
networks are found in nature or technology: They belong to the
domain of the possible, but not the actual.
From these two axes accounting for the cyclic nature of net-

works, the coordinate T provides additional information about
the organization of the resulting feedforward structure after
network condensation. Attending to the concept of a pyramidal
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Fig. 2. The morphospace of possible hierarchies Ω. (A) Different morphologies and their respective location withins Ω (Fig 1). Green icons represent unlikely
configurations (see SI Appendix for more information). (B and C) The occupation of Ω by an ensemble of random models. This set includes Erdös–Rényi (ER)
graphs with different sizes (100, 250, and 500) and average degrees hki (see color bar). Symbols are proportional to network size. (C) Morphospace occupation
of Callaway’s network model overlapped with the ER ensemble as a reference. Three network sizes (100, 250, and 500) and four connectivities ðhki= 2; 4;6; 8Þ
are present (see SI Appendix for additional models). (D) The coordinates of the 125 real networks are colored according to network types listed in the key and
sized proportionally to number of nodes. Sources of networks (12, 13, 53, 62–67) are detailed in SI Appendix. Numerical data for networks are shown in SI
Appendix, Figs. S44 and S45. GRN, MET, LANG, NEU, ECO, TECH, and B-T stand for gene regulatory, metabolic, linguistic, neuronal, ecological, technological,
and bow-tie networks. (E) Vertical box shows schematic icons of three representative systems.
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Dolphins

Zachary karate club

Macaque brain: visual/sensory cortex
Macaque brain: visual cortex 2
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Cat brain: cortical/thalmic
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Louvain

2008 NCAA Football Schedule
Electronic circuit (s208)

Biogrid: R. norvegicus

BA: (100,2)
Communication within a sawmill on strike

Protein: oxidoreductase (1AOR)
Dolphins

Zachary karate club

Macaque brain: visual/sensory cortex
Macaque brain: visual cortex 2

Les Miserables
Cat brain: cortical/thalmic

Simulated annealing

FIG. 17. Comparison of the dendrograms produced using a
Louvain algorithm (top panel) and simulated annealing (bottom
panel) for a subset of 15 networks. The only difference between the
two dendrograms is the order in which the “Communication within
a sawmill on strike” and the “BA: (100,2)” networks cluster together
and the distances at which the other networks become assigned to
the same cluster. The names of the networks are as they appear in
Table II in the Supplemental Material.

inspection, the dendrograms appear to be very similar, as there
are only a few small differences in the heights at which leaves
and clusters combine. To quantify the similarity between a pair
of dendrograms with underlying distance matrices denoted s
and t, we define a correlation coefficient ϕ as

ϕ =
∑

i<j (sij − s̄)(tij − t̄)
√[∑

i<j (sij − s̄)2
][ ∑

i<j (tij − t̄)2
] , (B1)

where s̄ is the mean of the distances sij and t̄ is the mean
of the distances tij . A pair of dendrograms derived from
identical distance matrices have a correlation coefficient of
ϕ = 1. The correlation for the example dendrograms shown
in Fig. 17 is 0.997. To get a better sense of the extent of
this correlation, we compare the observed correlations with
those obtained for randomized dendrograms. To make the
comparison, we first produce a distribution of correlation
coefficients ϕ between pairs of dendrograms drawn from
a large number of empirical (unrandomized) dendrograms
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FIG. 18. (Color online) Comparison of the distributions of cor-
relation coefficients between empirical Louvain dendrograms and
empirical (red, hollow) and randomized (blue, solid) simulated-
annealing dendrograms. See the text for details.

produced by the Louvain and simulated-annealing algorithms.
Because of the computational costs of calculating the MRFs
from the simulated-annealing algorithm, we only consider
the subset of 25 networks identified in Appendix B 1. We
select 15 networks uniformly at random from this subset of
25 networks and generate two dendrograms similar to those
in Fig. 17: One corresponds to the distance matrix produced
by the Louvain algorithm, and the other corresponds to the
distance matrix produced by simulated annealing. We then
calculate the correlation coefficient between the two distance
matrices. We repeat this process 10,000 times to obtain 10,000
correlation coefficients, whose distribution we show using the
hollow red histogram in Fig. 18. This procedure makes it
possible to compare a large number of dendrograms at the
computational cost of calculating simulated annealing MRFs
for a total of 25 networks, which we highlight with asterisks
in Table II of the Supplemental Material.

We compare this observed distribution of correlation
coefficients to a randomized reference. We focus on the corre-
lation between empirical Louvain dendrograms (i.e., empirical
dendrograms that result from distance matrices produced by
the Louvain method) and randomized simulated-annealing
dendrograms (i.e., dendrograms that result from distance
matrices produced by the simulated-annealing algorithm and
are then randomized). We proceed as follows: For each of the
10,000 dendrogram pairs that we assembled from 15-network
subsets, we create 100 randomizations of the simulated-
annealing dendrogram, and we then calculate the correlation
coefficient between each of these randomized dendrograms
and the corresponding empirical Louvain dendrogram. The
resulting distribution from 10,000 repetitions is the solid blue
histogram in Fig. 18. To randomize the simulated-annealing
dendrogram, we used the double-permutation procedure de-
scribed in Refs. [61,62]. This procedure has two steps.
First, we randomize the distances at which the different
clusters are combined. For example, consider an unrandomized
dendrogram in which clusters A and B are combined at a
distance of 0.45, and clusters C and D are combined at a
distance of 0.65; after the randomization, A and B might be
combined at a distance of 0.65, and C and D might be combined
at a distance of 0.45. Second, we randomize the networks
corresponding to each leaf in the dendrogram. This two-step
randomization procedure maintains the underlying distances
and the topology of the dendrogram.
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Automatic Discovery of Families of Network Generative Processes 19
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Table 2 Generator expressions for each family. c represents a constant value, s a small exponent,
B a big exponent and ⇤ is used as a placeholder for an arbitrary expression.

SOCIAL 
CIRCLE (SC) 
GENOTYPES

In-group linking behavior 

topological factors only:  
α, β, γ and θ 

exogenous factors only:  
δ 

combination of both: 
ε, ζ and η
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Table 2 Generator expressions for each family. c represents a constant value, s a small exponent,
B a big exponent and ⇤ is used as a placeholder for an arbitrary expression.

SOCIAL 
CIRCLE (SC) 
GENOTYPES

In-group linking behavior 

topological factors only:  
α, β, γ and θ 

exogenous factors only:  
δ 

combination of both: 
ε, ζ and η

ER h198i PA h190i ID h109i SC-g h97i SC-d h181i SC-h h128i

(Real)

(Synthetic)

Table 3: Visual representation of some empirical ego-networks (top row) with their reconstruction
(bottom row), for a selection of evoked families. ER, PA and ID are featured; each of the three main
subfamilies of SC are also present (generators 97, 181 and 128 are all based on an affinity function of
parameters 3, 2 and 5, respectively). Note that three of the empirical networks (109, 128, 181) feature
very small disconnected components, gathering no more than a handful of nodes which have not been
drawn here for clarity purposes.

spheres. The affinity function provides a very straightforward way of generating this type of linking
behavior. The constant number of groups present in the first parameter of affinity functions represents
an estimation of the number of social groups that ego belongs to. In our previous work [Menezes
and Roth, 2014] we included one Facebook ego network in the diverse set of networks used, and
the generator found for it was also based on an affinity function. In fact, under the typology we
present here, it would be classified as an SC-e generator. From the biological, social and technological
networks analyzed in that work, the Facebook ego network was the only one based on an affinity
function with a constant number of groups. This presents us with additional empirical evidence that
this is in fact a characteristic signature of ego-centered social networks.

To illustrate further these families, we provide a few visual examples of network generators on
table 3. For each selected generator of a given family, we put along the original empirical network
and its reconstruction using the same number of nodes. Spatialization follows a force-directed layout.
The number of social circles parameterized on y may be seen to be faithful to the original number of
clusters in the real network.

SC families differ in the linking behavior for nodes deemed to belong to the same group. Some of
them are purely based on topological factors (families a , b , g and q ), one only on exogenous factors
(family d ) and some on a combination of both (families e , z and h).

The largest family is e , which assigns probability of in-group links as a linear combination of
current degree (k) and exogenous factors (i). The second largest family by number of generators
found is family g , and it is also the one that is the most spread in the spatial embedding. In this family,
the probability of in-group connections is purely driven by topology, as an exponential of the current
degree of one of the nodes. We can think of it as a form of super-preferential attachment within social
circles – current popularity within the group is highly rewarded. For most cases, the probability of
connection between groups is given by a relatively small constant, and for a few it is zero.

Some questions remain. Why are some generators so simple, and why are more than half of the
generators so diverse that they cannot be classified into families? In an attempt to attain a better

17
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Fig. 3 Network generators mapped into a two-dimensional layout according to their pairwise dis-
tances. Different colors and shapes indicate families of generators that were manually identified as
semantically similar. The legend shows the pattern that identifies each family.
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lyzed in that work, the Facebook ego network was the only one based on an affinity
function with a constant number of groups. This presents us with additional em-
pirical evidence that this is in fact a characteristic signature of ego-centered social
networks.

SC families differ in the linking behavior for nodes deemed to belong to the same
group. Some of them are purely based on topological factors (families a , b , g and
q ), one only on exogenous factors (family d ) and some on a combination of both
(families e , z and h).

The largest family is e , which assigns probability of in-group links as a linear
combination of current degree (k) and exogenous factors (i). The second largest
family by number of generators found is family g , and it is also the one that is the
most spread in the spatial embedding. In this family, the probability of in-group
connections is purely driven by topology, as an exponential of the current degree of
one of the nodes. We can think of it as a form of super-preferential attachment within
social circles – current popularity within the group is highly rewarded. For most of
the cases, the probability of connection between groups is given by a relatively small
constant, and for a few it is zero.
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Fig. 4 Top panel, and bottom-left: Boxplots of numbers of nodes, edges and densities for the
underlying networks of the various families, as well as all, unclassified and classified. Horizontal
dashed line indicates overall median. Bottom-right: Stacked plot of family ratio per percentile of
network density.
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